
 

B. Math III, Physics IV 

Midterm Exam - March, 2006 

 

 

1. (a) A self-adjoint operator A on a Hilbert space H is said to be positive if  

>< ψψ ,A  ≥  0 for all ∈ψ H.  If A is a self-adjoint, positive operator, show that, for 

∈ψϕ , H,  

>><≤<>< ψψϕϕψϕ ,,|,| 2 AAA  

(b) Let { ∞

=1}nnu  be an orthonormal sequence in a Hilbert space.  Show that the sequence 

converges weakly to 0, but it is not convergent in norm. 

 

2. Consider a two dimensional Hilbert space H with orthonormal basis { 21 ,ee }.  Consider 

the operator H with the following matrix with respect to this basis: 
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(a) For an arbitrary real number λ determine the matrix for the spectral projection EH(λ).  

(b) If H is the Hamiltonian for a system find the probability distribution for the energy in 

the state  
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where a and b are real. 

(c) If ψ above is the state of the system at time 0=t , find the state at a later time t. 

 

3. (a) If H is the Hamiltonian of a system on )(2 RL with V
m
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, show that  
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(b) Let K,2,1,0, =nnψ  be the (normalized) eigenfunctions of the Hamiltonian with 

nnn EH ψψ = .  If the eigenvalues are non-degenerate and if the eigenfunctions span 

)(2 RL , show that  
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Hint: Compute >< 00 ,]],[,[ ψψXHX from (a) and use the fact that  
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4. Let ,....2,1,0, =nnψ , be the (normalized) eigenfunctions of the Hamiltonian for the one 

dimensional harmonic oscillator with nn nH ωψψ h)( 2
1+= .  For any complex 

numberα define the state αf  as follows: 
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(a) Show that αf  is an eigenvector of the lowering operator ( )iPXm
m

A += ω
ωh2
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(b) If αf  is the state of a system at time 0=t , show that the state tf ,α at any later time t is 

also an eigenvector of the lowering operator.  What is the eigenvalue? 

 

5. Let 321 ,, LLL be the components of the angular momentum operator in three 

dimensions, i.e. 23321 PXPXL −= , etc.  Let 21 iLLL ±=± . 

(a) If ψ is an eigenvector of 3L  with eigenvalue λ, show that ψ±L  (when they are non-

zero) are eigenvectors of 3L with corresponding eigenvalues h±λ . 

(b) Let 2
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2 )()()( LLLL ++= .  Write 2L  in terms of −+ LL ,  and 3L .  If ψ  is an 

eigenvector of 3L  corresponding to a non-degenerate eigenvalue λ, then show that ψ  is 

also an eigenvector of 2L . 
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Some facts about the harmonic oscillator: 
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Raising and lowering operators: 
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