B. Math III, Physics IV

Midterm Exam - March, 2006

1. (a) A self-adjoint operator A on a Hilbert space \mathcal{H} is said to be positive if $\langle A \psi, \psi\rangle \geq 0$ for all $\psi \in \mathcal{H}$. If A is a self-adjoint, positive operator, show that, for $\varphi, \psi \in \mathcal{H}$,

$$
k A \varphi, \psi>\left.\right|^{2} \leq<A \varphi, \varphi><A \psi, \psi>
$$

(b) Let $\left\{u_{n}\right\}_{n=1}^{\infty}$ be an orthonormal sequence in a Hilbert space. Show that the sequence converges weakly to 0 , but it is not convergent in norm.
2. Consider a two dimensional Hilbert space \mathcal{H} with orthonormal basis $\left\{e_{1}, e_{2}\right\}$. Consider the operator H with the following matrix with respect to this basis:

$$
H=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

(a) For an arbitrary real number λ determine the matrix for the spectral projection $E_{H}(\lambda)$. (b) If H is the Hamiltonian for a system find the probability distribution for the energy in the state

$$
\psi=\frac{1}{\sqrt{\left(a^{2}+b^{2}\right)}}\binom{a}{b}
$$

where a and b are real.
(c) If ψ above is the state of the system at time $t=0$, find the state at a later time t.
3. (a) If H is the Hamiltonian of a system on $L^{2}(R)$ with $H=\frac{P^{2}}{2 m}+V$, show that

$$
[X,[H, X]]=\frac{\hbar^{2}}{m}
$$

(b) Let $\psi_{n}, n=0,1,2, \ldots$ be the (normalized) eigenfunctions of the Hamiltonian with $H \psi_{n}=E_{n} \psi_{n}$. If the eigenvalues are non-degenerate and if the eigenfunctions span $L^{2}(R)$, show that

$$
\sum_{n}\left(E_{n}-E_{0}\right)\left|<X \psi_{n}, \psi_{0}>\right|^{2}=\frac{\hbar^{2}}{2 m}
$$

Hint: Compute $<[X,[H, X]] \psi_{0}, \psi_{0}>$ from (a) and use the fact that

$$
\langle u, v\rangle=\sum_{n}\left\langle u, \psi_{n}><\psi_{n}, v\right\rangle
$$

4. Let $\psi_{n}, n=0,1,2, \ldots$. , be the (normalized) eigenfunctions of the Hamiltonian for the one dimensional harmonic oscillator with $H \psi_{n}=(n+1 / 2) \hbar \omega \psi_{n}$. For any complex number α define the state f_{α} as follows:

$$
f_{\alpha}=e^{-|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}} \psi_{n}
$$

(a) Show that f_{α} is an eigenvector of the lowering operator $A=\sqrt{\frac{1}{2 m \hbar \omega}}(m \omega X+i P)$
(b) If f_{α} is the state of a system at time $t=0$, show that the state $f_{\alpha, t}$ at any later time t is also an eigenvector of the lowering operator. What is the eigenvalue?
5. Let L_{1}, L_{2}, L_{3} be the components of the angular momentum operator in three dimensions, i.e. $L_{1}=X_{2} P_{3}-X_{3} P_{2}$, etc. Let $L_{ \pm}=L_{1} \pm i L_{2}$.
(a) If ψ is an eigenvector of L_{3} with eigenvalue λ, show that $L_{ \pm} \psi$ (when they are nonzero) are eigenvectors of L_{3} with corresponding eigenvalues $\lambda \pm \hbar$.
(b) Let $L^{2}=\left(L_{1}\right)^{2}+\left(L_{2}\right)^{2}+\left(L_{3}\right)^{2}$. Write L^{2} in terms of L_{+}, L_{-}and L_{3}. If ψ is an eigenvector of L_{3} corresponding to a non-degenerate eigenvalue λ, then show that ψ is also an eigenvector of L^{2}.

Some facts about the harmonic oscillator:

$$
V(x)=\frac{1}{2} m \omega^{2} x^{2}
$$

Raising and lowering operators:
$A=\sqrt{\frac{1}{2 m \omega \hbar}}(m \omega X+i P)$
$A^{*}=\sqrt{\frac{1}{2 m \omega \hbar}}(m \omega X-i P)$
$A^{*} \psi_{n}=(n+1)^{1 / 2} \psi_{n+1}$
$A \psi_{n}=n^{1 / 2} \psi_{n-1}$

